Maximum Likelihood Markov Hypertrees

نویسندگان

  • Nathan Srebro
  • David Karger
  • Tommi Jaakkola
چکیده

One popular class of such models are Markov networks, which use an undirected graph to represent dependencies among variables. Markov networks of low tree-width (i.e. having a triangulation with small cliques ) allow efficient computations, and are useful as learned probability models [8]. A well studied case is that in which the dependency structure is known in advance. In this case the underlying graph is built based on prior knowledge, and a maximum likelihood Markov network over this specific graph is sought [5].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximum number of colors in hypertrees of bounded degree

The upper chromatic number χ(H) of a hypergraph H = (X, E) is the maximum number of colors that can occur in a vertex coloring φ : X → N such that no edge E ∈ E is completely multicolored. A hypertree (also called arboreal hypergraph) is a hypergraph whose edges induce subtrees on a fixed tree graph. It has been shown that on hypertrees it is algorithmically hard not only to determine exactly b...

متن کامل

Statistical inference for discretely observed Markov jump processes

Likelihood inference for discretely observed Markov jump processes with finite state space is investigated. The existence and uniqueness of the maximum likelihood estimator of the intensity matrix are investigated. This topic is closely related to the imbedding problem for Markov chains. It is demonstrated that the maximum likelihood estimator can be found either by the EM algorithm or by a Mar...

متن کامل

Maximum-likelihood estimation for hidden Markov models

Hidden Markov models assume a sequence of random variables to be conditionally independent given a sequence of state variables which forms a Markov chain. Maximum-likelihood estimation for these models can be performed using the EM algorithm. In this paper the consistency of a sequence of maximum-likelihood estimators is proved. Also, the conclusion of the Shannon-McMillan-Breiman theorem on en...

متن کامل

Estimation of Hidden Markov Models with Nonparametric Simulated Maximum Likelihood

We propose a nonparametric simulated maximum likelihood estimation (NPSMLE) with built-in nonlinear …ltering. By recursively approximating the unknown conditional densities, our method enables a maximum likelihood estimation of general dynamic models with latent variables— including time-inhomogeneous and non-stationary processes. We establish the asymptotic properties of the NPSMLEs for hidden...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001